Muon Neutrino and Antineutrino Oscillations

Alexander Himmel Caltech for the MINOS Collaboration

Fermilab Joint Experimental-Theoretical Seminar, June 14th 2010

Introduction

- What is MINOS?
- Neutrino Physics
 - Oscillation Basics
 - MINOS Physics
- The Experiment
 - NuMI neutrino beam
 - MINOS detectors
- The Analyses
 - Neutrinos and Antineutrinos
- The Results

Argonne · Athens · Benedictine · Brookhaven · Caltech · Cambridge · Campinas · Fermilab · Harvard · Holy Cross · IIT Indiana · Iowa State · Lebedev · Livermore Minnesota-Twin Cities · Minnesota-Duluth · Otterbein · Oxford Pittsburgh · Rutherford · Sao Paulo · South Carolina Stanford · Sussex · Texas A&M · Texas-Austin · Tufts · UCL Warsaw · William & Mary

What is MINOS?

- Three components:
 - NuMI high-intensity neutrino beam
 - Near Detector at Fermilab
 - Far Detector in Soudan, MN
- Measure oscillations by looking for disappearance between the detectors
- Detectors are magnetized unique among oscillation experiments

Neutrino Physics

- Oscillation Basics
- MINOS Physics

Neutrino Masses and Mixing

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

- With three active neutrinos there are two independent mass splittings:
 - $-\Delta m_{\rm sol}^2 \approx \Delta m_{21}^2 \approx 8.0 \times 10^{-5} \text{ eV}^2$
 - $-\Delta m_{\rm atm}^2 \approx \Delta m_{32}^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$
- MINOS is sensitive to the larger of the mass splittings and θ_{23}

Measuring Oscillations

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m_{atm}^2 \frac{L}{E})$$

Monte Carlo $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$

Measuring Oscillations

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{23}) \sin^2(1.27\Delta m_{atm}^2 \frac{L}{E})$$

Monte Carlo $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$

Measuring Oscillations

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m_{atm}^2 \frac{L}{E})$$

Monte Carlo $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$

- Measurements of $|\Delta m^2_{\text{atm}}|$ and $\sin^2(2\theta_{23})$ via v_u disappearance
- Measurements of $|\Delta \overline{m}^2_{\text{atm}}|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{\text{atm}}|$ and $\sin^2(2\theta_{23})$ via v_u disappearance
- Measurements of $|\Delta \overline{m}^2_{atm}|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{\text{atm}}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}^2_{\text{atm}}|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{\text{atm}}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}^2_{\text{atm}}|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{\text{atm}}|$ and $\sin^2(2\theta_{23})$ via v_u disappearance
- Measurements of $|\Delta \overline{m}^2_{atm}|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_u disappearance
- Search for sub-dominant $v_u \rightarrow v_e$ oscillations via v_{ρ} appearance
- Search for sterile v, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{\text{atm}}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}^2_{\text{atm}}|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics

Why study v_{μ} and \bar{v}_{μ} ?

$$P(\nu_{\mu} \to \nu_{\mu}) \stackrel{?}{=} P(\overline{\nu}_{\mu} \to \overline{\nu}_{\mu})$$

- Antineutrino parameters are less precisely known.
 - No direct precision measurements
 - MINOS is the only oscillation experiment that can do eventby-event separation

• Differences may imply new physics in the neutrino sector manifested as a difference in the effective mass-splitting.

Why study v_{μ} and \bar{v}_{μ} ?

$$P(\nu_{\mu} \to \nu_{\mu}) \stackrel{?}{=} P(\overline{\nu}_{\mu} \to \overline{\nu}_{\mu})$$

- Antineutrino parameters are less precisely known.
 - No direct precision measurements
 - MINOS is the only oscillation experiment that can do event- v_2 by-event separation v_1

• Differences may imply new physics in the neutrino sector manifested as a difference in the effective mass-splitting.

The Experiment

- NuMI neutrino beam
- MINOS detectors

The NuMI Beam

- 120 GeV protons incident on a thick, segmented graphite target
 - Producing a spray of hadrons
- Magnetic horns can focus either sign
 - Reverse direction of current
- Enhance the v_{μ} flux by focusing π^+ , K^+
 - And vice versa
- Adjustable energy

Neutrino Beam Composition

- Low energy neutrino mode
- Near detector CC interactions:
 - $-91.7\% v_{\mu}$
 - $-7.0\% \overline{v}_{\mu}$
 - $-1.3\% v_e + \overline{v}_e$

Antineutrinos in Neutrino Mode

- We've already presented an analysis of the antineutrino component of the neutrino beam.
- This sample has very poor sensitivity to oscillations.

Neutrino Mode

Antineutrino Mode

Antineutrino Cross-section

Why is the peak lower by a factor of \sim 3?

- x1.3 from lower π production
- x2.3 from lower interaction cross-section

Also explains why the high energy tail is predominantly neutrinos.

NuMI Beam Performance

 $3.21 \times 10^{20} \text{ POT } \nu_{\mu} \text{ mode}$

Previous Analyses

NuMI Beam Performance

MINOS Detectors

Strips in alternating directions allow 3D event reconstruction

MINOS Detectors

MINOS Event Topologies

The Analyses

Neutrinos and Antineutrinos

Alex Himmel

Oscillation Analysis in Brief

- Select (anti)neutrino events in the detectors
- Measure their energies to produce Near and Far detector spectra
- Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- Fit the Far Detector data to measure oscillations

The Neutrino Analysis

Since our previous measurement...

- P. Adamson, et. al, Phys. Rev. Lett. 101:131802 (2008)
- Additional data
 - -3.4×10^{20} to 7.2×10^{20} protons-on-target
- Improvements in the analysis
 - Updated simulation and reconstruction
 - New selection improves low-energy efficiency
 - New shower energy estimator with 30% better low-energy resolution
 - Split the data set into bins of resolution
 - No charge sign cut reclaim misidentified neutrino events at low energy

Reconstructed neutrino energy (GeV)

The Antineutrino Analysis

- Essentially the neutrino analysis of 2008
 - No resolution binning, shower estimator, new selector
 - Only stopped taking antineutrino data on March 22nd

- What's different with antineutrinos?
 - Lower statistics $\sim 1/12^{th}$ events
 - Larger wrong-sign component
 - Interactions are less hadronic

The Antineutrino Analysis

- Essentially the neutrino analysis of 2008
 - No resolution binning, shower estimator, new selector
 - Only stopped taking antineutrino data on March 22nd

- What's different with antineutrinos?
 - Lower statistics $\sim 1/12^{th}$ events
 - Larger wrong-sign component
 - Interactions are less hadronic

The Antineutrino Analysis

- Essentially the neutrino analysis of 2008
 - No resolution binning, shower estimator, new selector
 - Only stopped taking antineutrino data on March 22nd

- What's different with antineutrinos?
 - Lower statistics $\sim 1/12^{th}$ events
 - Larger wrong-sign component
 - Interactions are less hadronic

Oscillation Analysis in Brief

- Select (anti)neutrino events in the detectors
- Measure their energies to produce Near and Far detector spectra
- Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- Fit the Far Detector data to measure oscillations

Common Selection

- Basic selection
 - In-time with the spill
 - In the fiducial volume
 - At least 1 reconstructed track
- CC/NC separation using a kNN algorithm
 - Compare to monte carlo events
- 4-parameter comparison
 - Track length
 - Mean energy of track hits
 - Energy fluctuations along the track
 - Transverse track profile

"kNN"

- Basic selection
 - In-time with the spill
 - In the fiducial volume
 - At least 1 reconstructed track
- CC/NC separation using a kNN algorithm
 - Compare to monte carlo events
- 4-parameter comparison
 - Track length
 - Mean energy of track hits
 - Energy fluctuations along the track
 - Transverse track profile

- Basic selection
 - In-time with the spill
 - In the fiducial volume
 - At least 1 reconstructed track
- CC/NC separation using a kNN algorithm
 - Compare to monte carlo events
- 4-parameter comparison
 - Track length
 - Mean energy of track hits
 - Energy fluctuations along the track
 - Transverse track profile

Mean energy deposited per strip (MIPs)

- Basic selection
 - In-time with the spill
 - In the fiducial volume
 - At least 1 reconstructed track
- CC/NC separation using a kNN algorithm
 - Compare to monte carlo events
- 4-parameter comparison
 - Track length
 - Mean energy of track hits
 - Energy fluctuations along the track
 - Transverse track profile

- Basic selection
 - In-time with the spill
 - In the fiducial volume
 - At least 1 reconstructed track
- CC/NC separation using a kNN algorithm
 - Compare to monte carlo events
- 4-parameter comparison
 - Track length
 - Mean energy of track hits
 - Energy fluctuations along the track
 - Transverse track profile

- Basic selection
 - In-time with the spill
 - In the fiducial volume
 - At least 1 reconstructed track
- CC/NC separation using a kNN algorithm
 - Compare to monte carlo events
- 4-parameter comparison
 - Track length
 - Mean energy of track hits
 - Energy fluctuations along the track
 - Transverse track profile

Neutrino Selection

- Added a second selector that accepts lower energy tracks
 - Number of planes in the track
 - Energy deposition at the end of the track
 - Amount of scattering
- The final selection is a logical OR of these two cuts.

Neutrino Selection

• Increase sensitivity by improving efficiency (89% vs. 87%) at the expense of contamination (1.7% vs. 1.2%)

Antineutrino Selection

- Accept only events with positive reconstructed charge
- Use the Main CC/NC Selector from the neutrino analysis
 - Removes NC and high-y CC interactions
- Data/MC agreement comparable to that seen for neutrinos.

Antineutrino Efficiency & Purity

	Signal	Bkgd.
0-6 GeV	106	1.9
6-20 GeV	38	4.3
> 20 GeV	8	3.0

High energy v_{μ} contamination does not affect the oscillation result

Oscillation Analysis in Brief

- Select (anti)neutrino events in the detectors
- Measure their energies to produce Near and Far detector spectra
- Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- Fit the Far Detector data to measure oscillations

New Shower Energy Estimator

- Construct a three-parameter kNN using:
 - the shower energy within 1 m of the track vertex
 - the number of planes in the shower
 - the energy in the second reconstructed shower
- Estimator is the mean energy of the nearest neighbors

Neutrino Near Detector Data

- Majority of data taken in Low Energy Beam
- High Energy Beam gives us more events above the oscillation dip
 - Other beam configurations used for systematics, commissioning, MC tuning

Antineutrino Near Detector Data

Flux and crosssection uncertainties cancel when extrapolated from Near to Far detector.

Oscillation Analysis in Brief

- Select (anti)neutrino events in the detectors
- Measure their energies to produce Near and Far detector spectra
- Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- Fit the Far Detector data to measure oscillations

Near-to-Far Extrapolation

200

- The Near Detector and Far Detector spectra are not identical.
 - Due to π/K decay kinematics, neutrino energy varies with angle.
 - The Near Detector covers a wider solid angle
 - Higher energy π travel further and decay closer to the Near Detector

10 Events/Kton/1×10¹⁸ POT Far True E. (GeV)

Beam Matrix Extrapolation

- A beam matrix transports measured Near spectrum to Far
- Matrix encapsulates knowledge of meson decay kinematics and beamline geometry
- MC used to correct for energy smearing and acceptance

Resolution Binning

- Improve statistical power by separating high and low resolution events.
- MC parameterization of the energy resolution
- 6 Resolution bins
 - 5 bins for events with negative reconstructed curvature
 - 1 bin for events with positive reconstructed curvature (30% true v_{μ})

Oscillation Analysis in Brief

- Select (anti)neutrino events in the detectors
- Measure their energies to produce Near and Far detector spectra
- Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- Fit the Far Detector data to measure oscillations

Analysis Improvements

Neutrino Systematics

- Effect of uncertainties estimated by fitting systematically shifted MC
- Analysis is still statistically limited
 - The 4 largest systematics are included as penalty terms in the fit.

Antineutrino Systematics

- The antineutrino analysis is even more statistically limited.
- The two analyses have very similar systematics
 - Though sizes of the effects are not the same.

The Results

Alex Himmel 58

Blind Analysis

- These results are obtained from blind analyses
 - Finalized before looking at the full Far Detector data
 - selection cuts
 - data samples
 - extrapolation techniques
 - fitting routines
 - systematic uncertainties
- No changes have been made after box opening

And so...on to the results!

Far Detector Neutrino Data

→2,451 expected without oscillations

→1,986 observed events

Alex Himmel

Far Detector Neutrino Data

→2,451 expected without oscillations

→1,986 observed events

Oscillations fit the data well – 66% of fake experiments have a worse χ^2

Far Detector Neutrino Data

- Can see the characteristic dip of oscillations.
- Disfavor in a statistics-only fit:
 - Pure decay[†] at $> 6\sigma$
 - Pure decoherence[‡] at $> 8\sigma$

Neutrino Contour

MINOS Preliminary

$$\left| \Delta m_{\text{atm}}^2 \right| = 2.35_{-0.08}^{+0.11} \times 10^{-3} \text{ eV}^2$$

 $\sin^2(2\theta_{23}) = 1$
 $\sin^2(2\theta_{23}) > 0.91 (90\% \text{ C.L.})$

Neutrino Contour

MINOS Preliminary

$$\left| \Delta m_{\text{atm}}^2 \right| = 2.35_{-0.08}^{+0.11} \times 10^{-3} \text{ eV}^2$$

 $\sin^2(2\theta_{23}) = 1$
 $\sin^2(2\theta_{23}) > 0.91 (90\% \text{ C.L.})$

Far Detector Antineutrino Data

→155 expected without oscillations

→ 97 observed events

Far Detector Data

- Good data/mc agreement in charge/momentum
- Antineutrinos focused inwards
- Neutrinos defocused outwards

Far Detector Data

 Data shows the expected distributions of hadronic energy fraction for both neutrinos and antineutrinos

Far Detector Antineutrino Data

- → 155 expected without oscillations
- → 97 observed events

Far Detector Antineutrino Data

- → 155 expected without oscillations
- → 97 observed events

No-oscillations hypothesis is disfavored at 6.3σ

Antineutrino Contour

$$\left| \Delta \overline{m}_{\text{atm}}^{2} \right| = 3.36_{-0.40}^{+0.45} \times 10^{-3} \text{ eV}^{2}$$

 $\sin^{2}(2\overline{\theta}_{23}) = 0.86 \pm 0.11$

- Contour is determined using Feldman-Cousins.
 - Includes systematics

Antineutrino Contour

$$\left| \Delta \overline{m}_{\text{atm}}^{2} \right| = 3.36_{-0.40}^{+0.45} \times 10^{-3} \text{ eV}^{2}$$

 $\sin^{2}(2\overline{\theta}_{23}) = 0.86 \pm 0.11$

- Contour is determined using Feldman-Cousins.
 - Includes systematics
- Dot-dash line is a fit to all non-MINOS data

M.C. Gonzalez-Garcia and M. Maltoni Phys. Rept. 460, 2008

Comparison to Neutrinos

 Dashed line shows the antineutrino prediction at the neutrino best fit point.

Neutrinos and Antineutrinos

$$\left| \Delta \overline{m}_{\text{atm}}^{2} \right| = 3.36_{-0.40}^{+0.45} \times 10^{-3} \text{ eV}^{2}$$

 $\sin^{2}(2\overline{\theta}_{23}) = 0.86 \pm 0.11$

$$\left| \Delta m_{\text{atm}}^2 \right| = 2.35_{-0.08}^{+0.11} \times 10^{-3} \text{ eV}^2$$

 $\sin^2(2\theta_{23}) > 0.91 \text{ (90\% C.L.)}$

With More Antineutrinos...

• Even just another 4.5 months of running (double the current data set) would decrease the error by $\sim 30\%$.

Conclusions

- MINOS has the most precise measurement of $|\Delta m^2_{\text{atm}}|$
- MINOS has the first direct, precision measurement $|\Delta \overline{m}^2_{\text{atm}}|$

$$\left| \Delta m_{\text{atm}}^2 \right| = 2.35_{-0.08}^{+0.11} \times 10^{-3} \text{ eV}^2$$

 $\sin^2(2\theta_{23}) > 0.91 \text{ (at } 90\%)$

$$\left| \Delta \overline{m}_{\text{atm}}^2 \right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{ eV}^2$$

 $\sin^2(2\overline{\theta}_{23}) = 0.86 \pm 0.11$

- Measured with double the neutrino data and a dedicated antineutrino run
- With more antineutrino beam we can rapidly improve the precision on the antineutrino oscillation parameters

Acknowledgements

- On behalf of the MINOS Collaboration, I would like to express our gratitude to the many Fermilab groups who provided technical expertise and support in the design, construction, installation and operation of the experiment
- We also wish to thank the crew at the Soudan Underground Laboratory for keeping the Far Detector running so well
- We also gratefully acknowledge financial support from DOE, STFC(UK), NSF and thank the University of Minnesota and the Minnesota DNR for hosting us

Alex Himmel

Peak vs. Tail

Peak vs. Tail

Helium in the Decay Pipe

- At the beginning of Run III, helium was added to the decay pipe to prevent failure of the upstream window.
 - Our previous flux simulation could not model the helium using GFLUKA as part of GEANT3
 - Replaced it with a new flux simulation that is all FLUKA which accurately predicts the effects of helium.

Alex Himmel

Target Degradation

- Began during Run II and continued through Run III
- The exact mechanism of the decay is not known
- Missing fins at the shower max in the target model the energydependent effect
- Target to undergo post-mortem later this year
- Cancels between the two detector

Removing the Charge Cut

- The positive-curvature sample is ~30% true CC neutrinos.
- If the antineutrinos are oscillated at the antineutrino best fit point, makes a change only in 3rd significant digit of the result.

Change in Systematics

Overall hadronic energy

Track energy

NC background

Relative normalisation

Relative hadronic energy

Cross sections

Charge mis-ID

Beam

Alex Himmel

Neutrino Spectrum

Reconstructed Neutrino Energy (GeV)

Neutrino Contour by Run

Antineutrino Contour

$$\left| \Delta \overline{m}_{\text{atm}}^2 \right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{ eV}^2$$

$$\sin^2(2\overline{\theta}_{23}) = 0.86 \pm 0.11$$

A combined analysis using all antineutrino data is planned.

Atmospheric Neutrinos

